Circle True or False or leave blank. (1 point for correct answer, -1 for incorrect answer, 0 if left blank)

1. True FALSE The PMF function f goes from subsets of \mathbb{R} to $[0,1]$.

Solution: The function f goes directly from \mathbb{R} to $[0,1]$, not subsets.
2. TRUE False The PMF function f is defined for all of \mathbb{R} but is only nonzero on the range of X.

Show your work and justify your answers. Please circle or box your final answer.
3. (10 points) (a) (3 points) I am conducting a survey on teenagers under 18. Suppose that there are an equal number of people aged 13 through 18 , which is the population I am surveying. Let X be the age of the person I interview. Find and draw the PMF associated to X.

Solution: This is a uniform distribution from 13 to 18. There are 6 numbers in between and hence

$$
f(k)= \begin{cases}\frac{1}{6} & x \in\{13,14,15,16,17,18\} \\ 0 & \text { otherwise }\end{cases}
$$

(b) (4 points) Suppose that I may interview the same person twice. I interview 100 people total. What is the probability that I interview 30 or 31 middle schoolers (aged 13, 14)?

Solution: The probability of success is $f(13)+f(14)=\frac{2}{6}=\frac{1}{3}$. We can interview the same person twice so this is independent trials and hence binomial distribution. Then this probability is the probability that I interview 30 of them plus the probability that I interview 31 of them. So the probability is

$$
f(30)+f(31)=\binom{100}{30}\left(\frac{1}{3}\right)^{30}\left(\frac{2}{3}\right)^{70}+\binom{100}{31}\left(\frac{1}{3}\right)^{31}\left(\frac{2}{3}\right)^{69}
$$

(c) (3 points) What is the probability that I have to interview 8 people until I interview a high schooler (aged $15-18$, the high schooler is the 8 th person I interview)?

Solution: This is geometric. The probability of success is $f(15)+f(16)+$ $f(17)+f(18)=\frac{4}{6}=\frac{2}{3}$. Plugging this into the geometric distribution gives

$$
f(8)=\left(\frac{1}{3}\right)^{7}\left(\frac{2}{3}\right)
$$

